ETL vs ELT

 

Understanding the difference between ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform) is fundamental to modern data architecture decisions—ETL dominated for decades but ELT has emerged as the preferred approach for cloud data warehouses and big data platforms, offering flexibility, scalability, and cost advantages—this topic explores both paradigms, their trade-offs, and when to use each approach.

 

ETL: Extract, Transform, Load

Definition and Workflow

Extract → Transform → Load

  ↓         ↓         ↓

Read data  Process   Write

from       in         results

source     middleware to target

How ETL Works

Step 1: Extract

  • Read data from source systems
  • Database queries, file reads, API calls
  • Data as-is, minimal filtering
  • Step 2: Transform

  • Clean and standardize data
  • Combine multiple sources
  • Complex business logic
  • Aggregations and calculations
  • Data validation and quality checks
  • Step 3: Load

  • Write processed data to target
  • Data warehouse, data mart, reporting database
  • Structured, ready for consumption
  •  

    ETL Architecture

    Data Sources

    ├─ Database 1

    ├─ Database 2

    ├─ Files

    └─ APIs

        ↓

    ETL Tool

    (Informatica, Talend, Custom Spark)

        ├─ Extract

        ├─ Transform (Processing Server)

        │  ├ ─ Cleansing

        │  ├ ─ Joining

        │  ├ ─ Aggregation

        │  └ ─ Validation

        └─ Load

        ↓

    Data Warehouse

        ↓

    BI Tools / Reports

    Classic ETL Example

    from pyspark .sql import SparkSession

    from pyspark .sql .functions import col , upper , concat , when

     

    spark = SparkSession .builder .appName ( " ClassicETL " ).getOrCreate ()

     

    # EXTRACT: Read from source

    df_customers = spark .read .jdbc ( " jdbc:mysql ://source:3306/ crm " ,

                                   "customers" )

    df_orders = spark .read .parquet ( " hdfs ://data/orders/" )

     

    # TRANSFORM: Process in middleware

    # Clean customer names

    df_customers = df_ customers .withColumn (

        " name _clean " ,

        upper ( concat ( col ( " first_name " ), col ( " last_name " )))

    )

     

    # Filter valid orders

    df_orders = df_ orders .filter ( col ( "status" ) == "completed" )

     

    # Join and aggregate

    df_processed = df_ customers .join ( df_orders , " customer_id " )

        .groupBy ( " customer_id " , " name_clean " )

        .agg ( { "amount" : "sum" } )

     

    # LOAD: Write to data warehouse

    df_ processed .write .mode ( "overwrite" )

        .jdbc ( " jdbc:postgresql ://dw:5432/warehouse " , " customer_summary " )

     

    spark .stop ()

     

     

     

    ELT: Extract, Load, Transform

    Definition and Workflow

    Extract → Load → Transform

      ↓        ↓       ↓

    Read     Write    Process

    data     raw      in

    from     data     warehouse

    source   to       SQL

             target

     

     

    How ELT Works

    Step 1: Extract

  • Read data from source
  • Minimal filtering
  • Data as-is
  • Step 2: Load

  • Write raw data to data warehouse
  • Cheap cloud storage
  • Minimal transformations (if any)
  • Step 3: Transform

  • All processing happens in warehouse
  • SQL-based transformations
  • Use warehouse compute power
  • Data analysts can write SQL
  •  

    ELT Architecture

    Data Sources

    ├─ Database 1

    ├─ Database 2

    ├─ Files

    └─ APIs

        ↓

    Load (Minimal)

        ↓

    Cloud Data Warehouse (Snowflake/ BigQuery /Redshift)

        │

        ├─ Raw Schema

        │  ├ ─ Raw customer data

        │  └ ─ Raw order data

        │

        ├─ Staging Schema

        │  ├ ─ Cleaned data

        │  └ ─ Deduplicated

        │

        └─ Processed Schema

           ├─ Customer summary

           └─ Aggregate tables

        ↓

    BI Tools / Reports

     

     

    Modern ELT Example

    # Extract and Load (minimal processing)

    spark = SparkSession .builder .appName ( " ModernELT " ).getOrCreate ()

     

    # EXTRACT: Read from source

    df_customers = spark .read .jdbc ( " jdbc:mysql ://source:3306/ crm " ,

                                   "customers" )

    df_orders = spark .read .parquet ( " hdfs ://data/orders/" )

     

    # LOAD: Write raw data to warehouse (no transformation)

    df_ customers .write .mode ( "overwrite" )

        .option ( "schema" , "raw" )

        .parquet ( "s3://warehouse/raw/customers/" )

     

    df_ orders .write .mode ( "overwrite" )

        .option ( "schema" , "raw" )

        .parquet ( "s3://warehouse/raw/orders/" )

     

    # TRANSFORM: Happens in Snowflake SQL

    snowflake_queries = """

    — Create cleaned customer view

    CREATE TABLE processed.customer _summary AS

    SELECT

        customer_id ,

        UPPER(CONCAT( first_name , ' ', last_name )) AS name,

        email,

        address

    FROM raw.customers

    WHERE status = 'active';

     

    — Join and aggregate

    CREATE TABLE processed.customer _orders AS

    SELECT

        c.customer_id ,

        c.name,

        COUNT( o.order _id ) AS total_orders ,

        SUM( o.amount ) AS total_spent ,

        AVG( o.amount ) AS avg_order_value

    FROM processed.customer _summary c

    LEFT JOIN raw.orders o ON c.customer _id = o.customer _id

    WHERE o.status = 'completed'

    GROUP BY 1, 2;

    """

     

     

     

    ETL vs ELT: Detailed Comparison

    Aspect

    ETL

    ELT

    Processing Location

    External tool/server

    Data warehouse

    Data Stored

    Processed only

    Raw + Processed

    Storage Cost

    Lower

    Higher (keep raw)

    Processing Cost

    Higher (external tool)

    Lower (warehouse)

    Time to Load

    Longer (transform first)

    Shorter (load first)

    Flexibility

    Lower (fixed transforms)

    Higher (SQL changes)

    Data Quality

    Enforced in pipeline

    Documented in warehouse

    Historical Data

    Limited

    Full history available

    Learning Curve

    Complex tools

    SQL knowledge

    Best For

    Legacy systems

    Cloud data warehouses

     

    When to Use ETL

    ETL is Better When:

  • Limited warehouse resources: Don't overload warehouse with raw data
  • Data privacy sensitive: Transform before storing
  • Complex proprietary logic: Needs special tools
  • Non-standard sources: APIs, uncommon formats
  • Real-time requirements: Process and load immediately
  • Legacy systems: Traditional infrastructure
  • High volume sources: Pre-filter before loading
  •  

    Example: Banking System

    Bank transaction system → ETL transforms (validation, fraud check) → Load to DW

    (Cannot load raw transaction data due to regulatory requirements)

     

     

     

    When to Use ELT

    ELT is Better When:

  • Cloud data warehouse: Snowflake, BigQuery , Redshift
  • Cheap storage: S3, GCS costs are low
  • Flexible requirements: Business rules change often
  • Data science teams: They want raw data for exploration
  • Multiple downstream uses: Avoid re-engineering
  • Audit/compliance: Keep full history of raw data
  • Rapid development: Iterate SQL transformations quickly
  •  

    Example: E-commerce Analytics

    Product catalog → Load raw to S3 → Snowflake transformations (SQL)

    (Analysts write SQL to create different product dimensions)

     

     

     

    Hybrid Approach: ETL + ELT

    Modern systems often combine both:

    Data Sources

        ├─ Simple sources → ELT (load raw, transform in DW)

        └─ Complex sources → ETL (transform before load)

        ↓

    Data Lake / Cloud Storage

        ↓

    Data Warehouse

        ↓

    BI / Analytics

     

     

     

    Real-World Decision Matrix

    Scenario

    Approach

    Reason

    CRM to Salesforce DW

    ELT

    Cloud-native, simple schema

    IoT sensors to analytics

    ELT

    High volume, cheap storage

    Bank transactions

    ETL

    Regulatory, privacy

    Social media to DW

    ELT

    Flexible, changing schema

    POS to data mart

    ETL

    Real-time, complex rules

     

    Tools and Technologies

    ETL Tools

  • Informatica: Traditional enterprise
  • Talend: Open source option
  • Apache Spark: Big data ETL
  • Custom Python/Scala: Full control
  • ELT Tools

  • dbt (Data Build Tool): SQL transformations
  • Stitch: Cloud data pipeline
  • Fivetran : Managed ELT
  • Airbyte : Open source ELT
  • Cloud-native: Snowflake/ BigQuery native transformations
  •  

    Best Practices

    For ETL:

  • Idempotent operations: Safe to rerun
  • Data quality gates: Validate before load
  • Error handling: Graceful failures
  • Monitoring: Track execution time and success
  • For ELT:

  • Separate schemas: Raw → Staging → Processed
  • Document transformations: SQL comments
  • Version control: Track schema changes
  • Query optimization: Avoid expensive operations
  •  

    💡 Key Insights

    •   Cloud shifted the balance: ELT now preferred for cloud DWs

    •   Storage is cheap: Keep raw data for reprocessing

    •   Flexibility wins: Business rules change frequently

    •   Audit trails matter: Raw data history valuable

    •   Hybrid is realistic: Different sources, different approaches

    📚 Study Notes

    •   ETL: Transform first, load processed data

    •   ELT: Load raw first, transform in warehouse

    •   ETL pros: Privacy, early validation

    •   ELT pros: Flexibility, cheaper, full history

    •   Modern preference: ELT for cloud systems

    •   Hybrid: Use both for different data sources

     

    Leave a Reply